A study on the differences of teaching mathematics and science separately and integrated

Dori Rodgers
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd
Part of the Elementary Education and Teaching Commons

Recommended Citation

Rodgers, Dori, "A study on the differences of teaching mathematics and science separately and integrated" (1997). Theses and Dissertations. 2110.
https://rdw.rowan.edu/etd/2110

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please contact graduateresearch@rowan.edu.

A STUDY ON THE DIFFERENCES OF TEACHENG MATHEMATICS AND SCIENCE SEPARATELY AND INTEGRATED

by
Dori Rofgers

A THIESIS

Submitted in partial fulfilment of the requirements of the Master of Arts Degrese in the Graduate Division of Rowan University 1997

Approved by

Date Approved $1 / 2 / 247$

> ABSTRACT
> Dori Rodgers
> A Study on the Differences of Teachung Mathematics and Science Separately
> and Integrated
> 1997
> Dr. Molinari
> Masters in Elementary Edacation

This study determined if teaching science anri mathematics with an integrated approach would increase stadents' achievement. It also determined whether males or females ackieved higher in science and mathematics when tarught with the integrated approach as compared to teaching the two disciptines separately. It determined whether the attitudes of the fourth grade students improved when mathentities and science were taught pith an integrated approach.

The group participating in this stody consisted of one fouth grade class. The total population of the study was sixteen fourth grade, heterogeneously grouped stadents. The class consisted of twelve female and four male students.

For one month mathernatics and science were taught as separate disciplines. For another month, mathematios and science were taught as an integrated unit. The mean scores were calculated each month. Each student was given an attitude survey to cetemine how they felt about mathematics and science.

An analysis of the data was completed in prider to accept or reject the four stated hypotheses. t-Tests were performed to determine if any significant differences existed between the mean scores. After analyzing the resuits of these lests, it was found that there were no significant differences in achievement levels, bat there weft significant differences in student attitudes.

MINI-ABSTRACT

> Dori Rodgess A Study on the Differences of Teaching Mathematics and Science Separately and Integrated 1997 Dr. Motinari

This study determined if teaching science and mathemstics with an integrated approach would increase students' achievement and whether meles or females achieved higher in science and mathematics. It determined whether the attitudes of the fourth grade students improved when mathematics and science were taught with the integrated approach. It was found that student achievement did not increase sigmificantly, but stadent atitudes did increase a significant amount.

Acknowledgments

The authar wishes to express her appreciation to the foldowing individaals who have contributed to the completion of this mesis:

To my husband, Brwe, who helped me in any way he condd so I could finish this thesis.

To my son, Timothy, who let me wark when he really wanted me to play.
Fo Dr. Molinari for his guidance through the writing of this thesis.
Fo my colteagnes, for their help in completring this thesis, especially Kefly, for always remembexing me when she found grear information on my sulhject.

To my mother, for alwnys quecuraging me to fmish my Mastry's Degree and for the lase minute baby-sithing.

TABLE OF CONTENTS

EAGE
ACENOWLEDGMENTS ii
LIST OF TABLES v
CHAPTER
I. THE PROBLEM 1
Significance of the Study I
Statement of the Problem. 5
Purpose of the Stuty. 5
Statisnemt of the Hypotheses. 5
Melhods and Frocedures of the Stwiy 6
Linsitations of the Study 7
Definition of Terms. 7
Ongruization of the Study 8
II. REVEW OF THE LIIERATLRE 9
Introcluction. 9
Learning Theory. 10
Iutegamion of Scioneo and Mathematics. 11
Reform 16
ail. DESIGN OF TFIE STUDY. 23
Introduction. 23
Setting. 23
Description of the Population and Sample 24
Description of the Instrument. 25
Relationship of the Jotstument to the Null Hypothess 26
Time Period and Procedume of Data Collection. 27
Summary 29
IV. ANALYSIS OF THE DATA. 30
Introduction. 30
Analysis of Elypothesis 1. 31
Analysis of Hypothesis 2 37
Analysis of Hypothesis 3. 39
Analysis of Hypothesis 4 41
Summary 44
V. CONCLUSIONS AND RECOMMENDATKONS 45
Summary of the Problem. 45
Summary of the Method of Investigation. 45
Summary of the Findings and Conclusions. 46
Implications. 47
Reconmendations for Futare Study. 49
APPENDIX A. 50
APPENDIX B. 64
APPENDDX C 74
REFERENCES. 77
BIOGRAPHLCAL DATA. 80

List of Tables and Charts

Tables Page
$1-$ Tests Scores and Mean Scores for the Foluth Grade 32 Students When Mathermatics and Science Were Taught as Separate Disciplines for the Month of January
2 - Tests Sceres and Mean Scores for the Foutth Grade 33 Students When Mathematics and Science Were Taught as an Integrated Unit for the Month of February
3 - Results from a t-Test for Independent Sarnples Compating 36 the Mean Scores of the Fourth Grade Students When Mathematics and Science Were Taught Separately in Jamuary and as an Integrated Unitit in February
4 - Results of at-Test for Independent Samples Comparing 37 the Mean Scores of the Male Students to the Female Students When Mathematics and Science Were Taught Separately in Janaary
5 -Results of a t-Test for Independent Satmples Comparing 39 the Mean Scores of the Male Students to the Female Students When Mathematics and Science Were Taught as an Integrated Unit in February
6 -Results of the Attitude Survey Given When Mathematics 42
and Science Were Taught Separately and When the Disciplines Were Integrgated
7 - Results of the t -Test for Independent Samples for the Autitude 43 Survey Given When Mathematics and Science Were Taught Separately and Integrated
Charts Page
Il - Comparison of the Individual Means When Mathennatics 34 and Science Were Taught Separately in January and Integrated in February
2 - Comparison of the Class Meats When Mathematics 33 and Science Were Taught Separately in Jamuary and Infegrated in February
3 - Compatison of the Mean Scores of the Male Group to the 38 Female Group When Mathematics and Science Were Tanght Separately in January
4-Comparison of the Mean Scores of the Male Group to the 40 Fernale Group When Mathematios and Science Were Taught as an Integrated Uniz in February

Chapter 1

The Problem

Significance of the Study

Eage numbers of young Americans are mot equipped to work in, entathite to, profit from and enjoy omis fecimological society. Too maty stodents leave elementary and secondary schools with an inadequate trackproumd in mathematios, sciemoe and techology. These students lack adequate knowtedge to stquire the trining, skills and understandings that are needed today and will be reeded cven more in the 2 ist cemtury. (Barba, 1995)

A stated goal of Goals 2000 is that United States sturents with be "tirst in the
 p. I) In order to ascomplish this goal, sohoch need to reasess their science and mathematics curriculums. Many professional organizations abe sentur standards to improve the teaching of science and mathematies. The National Council of Teachers of Mathematios (N.C.T.M.) have developed Curriculum and Evelation Standards as well as Professional Teaching Standards. Project 2061 and Science For All Amencans lave set standards for science. The National Science Teachers Association is working to develop an integrated, therne-based curriculum in science that involves all students,
(Fembmore and Cook, 1993) Setting standards is tie begining of reform in science and mathematics.

The N.C.T.M. urges schools "to prepate mathematically litexate citizens who cat function efficiently in our society and contribute to the American denooratic process."(Underhill, Abdi, and Peters, 1994, p. 26) As stated in the N.C.T.M. standands. "Students should have many opportunties to observe the interaction of mathematies wish other school subyects and with everyday society."(Haigh and Rehfeld 1995, p. 240) Mathematies should not be seen as a separate discipline, but rather, th a way to make sense our of the world.

Science For All Aumicars and Praject 2061 provide us with stinderds for teaching seience. The standards include science, mathenatios, and technology. Project 2061 oulliree the knowledge, slails and antitudes that all students should acquife. It muphasizes that there should be less coverage of factual material fold to imke more lime for students to develop better understandings of the key coneepts. One of the behchumks states, "The student should know that scientific problex have sometimes led to developurnt of thew mathematics." (Aldemen and Ruherford 1993, p. 21) We can see that a comnection fienween science and mathematios is buing emphasized, thus showing the indionsence of inlegration.

Children should be actively involved in the learning prowess. Constructivists betieve the teaching and leaturis of scienee and mathematics sloula tely on the "hamds-on" approach experiment, discussion, cooperation and participation,(Fisher, 1992) When science and mathematios sme integrated, the two disciplitres beome relevant and meatringful to the leamer. Mathematics, when integrated with science, gives shatent the opportunity to apply the discipline to real situations that relate to the student's world

The inclusion of science in the trathematics curricuium and mathenatios in the
science curriculum would provide continuity for students. By integraing mathematics and science, students would see more relevancy and appkicability to their world. When science and mathematics are tanght as separate disciplines, the relevancy of each atch touched upon only briefly, if at all. In the past, content coverases, father than contextual understanding has been valued in mathernatics and seiende. For these reasons, studentes never saw the commection to real life. When we integrate science and marhematics, the disciplines can be seen as relevant and meaningfui to the leariter, Sudents can apply the discipline to real life situations that are felevant to beir world, from their own petspective. (Davison, Miller, Metheny, 1995)

An integrated approach to science and mathematies would assist students in making connections between "school learning" and the "real worle." As Ruthenford and Altigren (1988) state, "science and mathematics have had a long and successful relationship. On the one hand, science continually provides mathematies with challenges, while on the other hand mathematics was developed as a slitable way to analyze scientific problems."(Barbz; 1995, p. 280) The integration of science and mathematics will empower students and hetp them make connections which can be applied to everyazy life. After all, many real life problems require both raathematical and scientific skills.

The integration of mathematics and science is not a new idea. In the 1840 s , Fredich Froebel pionecred the use of manipulative materials to teach rathematical concepts and scientific principles through a thernatic, finquiry-based approach to leaming. After Froebel, in the 1900s, the Central Association of Science and Mathematics Teachers formed in the United States. The purpose of this association was to establish a closer retationsiup between mathenatics and science teachers. In the 1960s, science curriculum projects were written using an integrated miathexnatics and science inquiry-based approach to iearning. Science: A Process Approach, Science Curiculum Improvement Study, and Elementary Science Study were three
 rhe Acrivities that Integrate Mathematics and Science (AMMS), Linified Scicnee amd Mathematios for Elementary School (USMES), and Great Exphorations art Mathematics and Science (GEMS) materials-(Barba, 1995) These materials are used today by some elementary schools.

There are benefits to the integration of science and mathematics. There are many reasons why teachers should integrate the disciplimes. "Mathernatios can enable students to achieve deeper undentandings of science concepts by providing ways to quantify and explain science relationships."(Haigh and Rehfeld, 1995, p. 241) Many national orgarizations recograze the importance of the integration of rathematics and science teaching and learning. The integration of the discipines ofers greater oppomnity to motivate stodents and create positive attitudes towart mathematics and science. When students see a relationship between what they are iearning and their personal lives, their interest in leanming increases. The integration of mathematics and science increases students' achievement in both disciplines. (ILaigh and Rehteld, 1995) The integration of mathematics and science can be readily achieved through the use of current technology and enticumm tesources. Since the pedagogy of the two aisciplines are similar, mathematies and science are intertwined. In order to have competent shudents there is a need to provide science and mathematios career knowledge and real werid connections for both disciplines at the elementary school level.

The Carnegie Commission on Science stazes:
Inadequacies in precollege mathematies and science education are a chronie and serious threat to our nation's fithite The nationat itherest is strongly bound up in the ability of Americans to compete technically. All young people, inchuding the noncollege-bound, the disadvantaged, and yoleng women, must be given the oppontunity to become competent in mathematics and science.(Fisher, 1992, p. 51)

Statement of the Problem

Cousd it be that the students in fornth grade at Seventh Avenue Sciool in Haddon Hcighls will demonstrate an increase in achievement levels when matheratics and science instruction are integrated, as conpared to when they are taught as separate disciplipes?

Purpose of the Study

There are three parposes to thés stoky. This study will determine if teaching science
 this study wrill deptrmine whether males or females achieve higher in seience and mathematies when thaght with the inegeted aproach, as comqarei to teaching the tro disciplines separately. Third, it will determine whether the mitruiles of the Fourth grede students improve when mathenatios and scinnce are taught with ant integrited approach.

Statement of the Ifypotheses

The following hypotheses were presented for investigation:

1. There will be no sigrificant differences in the acheverntent levels in the fourth grade students in Seventh Avenile School in Faddon Heights when mathematics and science instruction are integrated as opposed to being tanghy is separate disciplines.
2. There will be no significant differences in the achievencat ievels of anales and females in the fouth grade when science and mathematics are taught as sepazate fisciplines.
3. There will be no significant differences in the achtevenent levels of males and females in the fourth grade asing the integrated approach to science and mathematics.
4. There will be no significant differences in the attitudes of the fourth grade students when taught with the integrated approach or wheir taught the two disciplines separately.

Methods and Procedures of the Study

An experimental design model was employed using sixteen fourth graders in the Haddon Fleights Schoot District. When science and mathematies ware taught separately, a test was given on each objective after it was taught. The matan score was calcutated for each student and the class. When science and mathematics were integrated, a test was given on each objective after it was taught. Again, the mean scote was calculated for each student and the class. The neans of the two months were compared for differences using a r-Test.

Linitations of the Study

The following are timitations of the study:

1. This researele was linnited to one fourth grade class in Seventh Avenue School in Faddon Heights as of lamuay d, 1997.
2. The length of the study wis restrieted to eight weeks.
3. The chase is muge up of twelve fernies and four males.
4. Bifferent unith mite tareht during each four weck period, thus the ofjectives were not exacty the same.

Derlinition of Terms

Manipmlative Manterials - Objects or wing that the student is aith fo feel, touch kandle, and move. They may be real objects or objects med to represeri ideas.
"TIands-on" Approach - Mertpulating with concrete materials.
N,C.T.M - The National Council of Teachers of Mathematios sel mathematios standards.
N.S.T.A. - The National Science Teachers of Americz are working to develop Ategrated, theme-based ofrriculurns in science that involve all stodents.

AMM - Activities that Integrate Mahematics and Science that assist in the integration of the two disciplines.

Organzzation of the Stody

Chapter I includes an overview of the entire study. It presents the significance of the study, the statement of the problem, the purpose of the shaty and the specific hypotheses tested. It also inchudes the methods and procedures o: the study, the limitations of the study, defmition of tems, and the organization of the thesis

Chapter II presents a review of the Iiterature relevant to this study. The reviewr includes an introduction and a presentation of research relatedi to the integration of mathematics and science. It includes what the organizations thet are active in this approach to teaching are doing to impiementt their ideas.

Chapter III provides a description of the design of the study. This includes the seting of the study, a description of the subjects used and the grocedures for the study. The instruments used with the study and a statement about thex. rellability and validity is included also. The type of data collected and the methods used to analyze the data is explained.

Chapter IV presents the data collected from the tests given in January and February on each objective taught. It presents the data related to the iypotheses. It inciades the analysis of the methous used in the study. It also shows the significance of each of the stated hypotheses.

Chapter V surmarizes the results of the study. It states a conchosion and irnpifations using the information gathered 形 the phevious clapters. It also includes reconmendations for future study.

Chapter II

Review of the Literatare

Introduction

Something must be dowe to change sudenis' viewa of science and mathematies. Fisher states, "Tn American school distrtets the teaching of ecience has virtually disuppeared
 A low percontage of students pookess in-depth sciendife knowiedge. The oufiook of marhematics isn't much better. By cighth grade, stadents have geteraly matcieñ no nore than basic arithmetic. Students are weak in tersuning sud problens solving skills." (Fisher, 1992) Edueators need to fald a solution to this dilemma.

The literatare review int tis chapter will explain the learning theories of soveral psuchologists. If will report the benefits of the integration of tarthetratics and science. This study will momber reform elfiorls in the schools to change the mathematics and soience curriculums and the obstacles that must be evencome.

The resoukees used in this review were collected from the Sawitz Lifrary at Rowan College in Glassboro, NJ, various sites on the Intentef, educational magaines, professional journals, and in-service workshops. The Core Curiculum Standards for New Jersey and the National Standards for Science and Mathenatios at the foutin grade level were used throughous this stuly.

Learning Theory

Constructivism it the leading theoretical position in education that believes mal children lem science and mathematios from the moment they become aware of thein environment. Childrea build models of the real world through every day experifnces. These models help them understand what they have seen and heard and to predict what may happen text. Constructivists believe what the learner knows of of entral infurtance. (Treagust, Duit and Fraser, 1996) They believe that students actively construct thetir own knowledge whenever they lean something.

From a constructivist point of view, there are five basic assmptions shared by mathematics and science educators:

1) More emphasis will be given to the applicability of sience and mathematics knowledge in which students are interested. Mathenatics and stience of our daily lives will become appropriate content for buiking connections betweer prior knowledge amd scientific or mathematical content.
2) Mathenatics and science knowledge is tentative himan construction and not eternal truth.
3) More elaborate and complex mathematioal and scientific ideas must be demonstrated to allow deeper and broader explanations if they arc to become important to students.
4) The approach must be student centered. The classrocm climate should suppont and encourgee the exchange of ideas. Students muse become aware of their own thinking processes.
5) Noms, routines and pattems of classrootx enteractions form an influence on the effectiveness of reform efforts in the interation of science and mathematics. (Treagust, ef al., 1996) These assumptions must be understood in orden to thform the science and
mathematics curtitulume.
Aceording to Fiaget, cluldrun from ages seven to Aleven ary in the concrete stage of devilopment. In this stage, the child is able to solve coacrete or hands-on problems in a logical fashion. Fiaget also said that all knowledge is constructed by direct physical contact with objects or events. (Charbonnean and Reider, 1995) Therefore teachers must continue to supply manipulative materials to students to ruake Iearring meaningfal.

Many schools are stressing that teachers teach to multiple intelligences. These intelligences, as termed by Gardner, are logical-mrathematical, interpersonal, intrapersomal, musical, spatial, bodity-kinesthetic, and linguistic. Accordug to Gardmer, feachers need to taach for more thorough understanding. Gardner believes children tearn in different ways fad according to the strengths of certain intelligences.(Charbonnesu and Reider, 1995) Of course, diffetent children have strengths and weaknesses in different intellogences. By integrating mathematics and science, teachers would be teaching to more of the intelligences and allow for the different ways in which children leara,

Dewey's approach to education whe to attompt to connect subject-matter knowledge with the child's experience. Dewey, in Expenience sand Educatian, (1938, p.88) states that ris is a candinal principle of enheation that the beginning of instruction shall be roade with the experience learons already have; that this experience and the capacities that have been developed during its course prowife the starting point for all further leanning " (Charbonneau and Reider, 1995, p. 4) Dewey's insights fionn se many years ago still pertain to how a child learns today.

Integration of Science and Mathematics

Tritegration deals with the extent to which teachers use examples, data, and informaton from a variety of diacighimes and cultures to illastinte lie key concepts,
principles, generalizations and theories of the disciplize. There are frwe types of integration: 1) discipline specific, 2) content, 3) process, 4) methodological, and 5) thematic. (Davison, et al., 1995) Each type integrales the discipilizes in a diferent way.

Disciplone specific integration involves an activity that includes two or more different branches of mathematics or science. This does not necessarily integrate the two disciplines, but some branches of mathematics and some branches of science are intertelated and may be integrated.(Davison, et al, 1995) For sxample, when teaching about squares in mathematics, you may afso teach about paratel ines, perpendicular lines and angles. It does not integrate science but it does integrate several mathernatical concepts.

Process integration uses real life activities in the classroom. Students experience the processes of science and perform the needed mathematics. Studeats conduct experiments, collect data, analyze data, and report results. They use skills like problen solving reasoning, estimating, observing and classifying an of which are inchuded in the N.C.T.M. standards. (Davison, et al, 1995) The AMS activities, discussed later, and used as a unit in this study are an example of process integration.

Methodological integration is not heard of much in lithature today. Science methodology is integrated with the teaching of mathematics in this approach. Students will investigate issues in both science and mathematios using strategies such as inquiry discovery and exploration. This might be termed as experimental science.(Davisom, et at, 1995)

Thematie integration is probably the most well known especially to elementary teachers. By using a theme, teachers design a unit around that sultyeet. Thematic teaching includes all disciplines, not only mathematios and science.(Davinon, et al, 1995) An example of a theme might be a unit on sharks to develop mathematios and science concepts.

When using content specific integration the teacher uses an objective from the mathematics curniculum and an objective from the science curriculimn An activity that incorporates both objectives is pertormed. This type of integration weaves together the existimg programs in science and tomthematics.(Davison, et all, 1955) For example, if you teach about dimosaurs in science, the measurement of dinosaus can the tanght from masthematics.

The ADMS projects ate uniss that were developed to untegrate mathematics, science, language arts and social studies. The topics of the filluS projects deal with concerns of the real world. The activities help develop positive autitudes towards the study of mathematios and science and are of hath interest to children. The lessons inchude hands-on investigations, are student-centered, promote inquiry; higher onder thinking processes, and reasoning The students ate the focus of the activities. The tencher acts as a resource and assesses the knowledge, skill, processes and behaviors of the students. (Berlin and Hillen, 1994) Students have opportunities to develop positive attitudes, realistic betiefs, and to become confident in their ability to do mathematics and science.

The AMS project has four major objectives. The first objective is to improve the students' understanding of mathematics and science and how they are related, while at the same time developing a strong positive attitude toward the two disciplines. The next objective is to train teachers to assume leadership roles in the districts by proviang staff development in mathematics and science. Another objective is to assist classroom teachers in changing the way they teach mathematics and science by using a hands-on, sudent centered approach that protaotes thiaking and understanding. The last objective is to provide sound integrated mathematios and science curriculum experiences which are consistent with the recommendations of the N.C.T.M. Standards and Project 2061.

The goal of the AlMS project is to provide opporturities to acquire fundamental
concepts and procedures opportumities to discover, inquine, reflect, constroct ami
 Albis uses real life problems to leam ahour thathematios and seience. Ant ABMS project unit will be used in this study.

The scientific and mathematics endeavor should include an understarding of the umion of mathematics and saience. Mathematics is a science witioh provides the hanguge of science with a powerful amalytical tool. Science and mathematics have roots going back into history and into every part of the morld Mathematies is the soienee of abstract pattens and relationships. Mathematics is a creative process rather than one of visig rnenurized rules to calculate answers. Science and mathematics teal with problems that originate in the everyday world,("Science For All Amenicans Summary," 1995) They ane related to cach other, and therefore should be related when they are anght to studants. In 1990, Butherford and Ahlgren state:

The alliance between science and mathematics has a long history, datiug back centuries. Science provides mathematics with interesting problems to investigate, and mathematics provides scienee with powerint tools to use in analyring data... Science and mathematics are both trying to discover geteral patters and relationships, and in this sense they are part of the same endeavor. (Berin and White, 1992, p. 340)

This quole tells us that nathematics and science are rotated, and heip us to solve real world problems.

At the Wingeread Conference, educatons gathered to discuss the integration of science and mathematics. Mary bexpfis of integration Wrese discovered it provides oppominities for out of sehool resource persons to become involved th the schools. Integration strmulates spoup interaction and social development. It also bridges ell understauding between concrete and abstract representations for stadents. Integration of the disciplines pats an emphasis on information use rather thaty the acquisition of
information. Students have opporturities to put iveas logether and gain a deeper
 science and mathematics if schools.(Merlin and White, 1992) This quote from the conference sums op what integration is about, "Integration infuses mathemetical methods in science and scientific methods into mathematies such that it becomes indistingniskable as to whether it is mathematics or stience." (Benh and White, 1992, p. 341) The integration of science and tuathernatics hefos stedents reailize that mathematics and science are everywhere.

The students are the most important people to eotusider when bringiteg about change. Research has shown that when mathematics and science are integrated studens' altitudes towarts the disciplines improve significanally. Integration also improves students' problem solving abilities in both science and makematics. it is effective in improving students' mathematicol graphing skills athd science process acquisition.(Barba. 1995) Students benefit from seeing how mathematics and scinnce are involved in acquiring new knowledge. Stadents are able to find solutions to real world problems through this integrated approach to learuing. Integration may encourage support and confidence tin the students' ability to do science and mathematice (Mitchell, Mriler and Paine, 1995) Since integration is so heneficial to students, reachent must make an effort to change the way they are teaching mathematios and science. The National Resedeh Council (1990) states:

Since mathematics is both the languge of science and a science of pattents, the special links betweer mathematics and science are far more than just those between theory and application. The methotology of matherratical inquiry shares with the scientific method a focus on exploration, investigation, conjecture, evidence, and xeasoning. Finder school ties between science and mathenatics should especially help students' grasp of both fields.(Berin and White, 1992 p. 340)

Reform

Recent reform in mathematics and science education calls for the active involvement of students in instruction related to real life. To keform instruction, we have to rethink all levels of the mucational systern. We should be foetsed on supporing classooms that are devoted to aetive, meaningfá leaxaing. We most get suppoxt from paincipals, teachers, parents and the community, admemistration, and politicat sthctures.(Fennimote and Cook, 1993) With supprot teachers car: institute chantges of the science and trathematics curricuhums.

Many teaching and learning changes must take place to reform mathematics and science instruction. First, we must recognize that the cument teaching metnods are not based on current research about leaming. Teachers must be cormitted to ieaming new Ways of teaching and to try new ways of teaching and leaming approaches. New modes of assessment of leaming moust be developed. There must be amamaremess of the need for the ongoing traiming of teachers. The folfow-up of teactier training most be comprehensive, ("A Model of Change in Science and Mathematies Education," 1993) Professional development plays an important role in implenenting a new practice.

The National Science Foundation reafimmed the importanee of attending to the growing need for mathematically and scientifically lizerate United States citizens. Systemic reform is the ongoing process of changing the way individuals tiew leaming and teaching within each classroom and beyond, to schools, to commurty, to administrative etitics.(Fenmimore and Cook, 1993) Through systemic refontu it is hoped that the educational system cam be transformed to make lasting change.

Systemic change occurs when we reformulate the gonds of learning. The curriculum must reinforce the new vision. Insimetion mast promote inquiry, purposeful dialogue, and problem-focused collaboration. (Femimore and Cook, 1993) Assessment
needs to foctis on higher order thinkiny as in Bhora's Taxonony. Whers we alter our goals for instruction and assessment, systevic change may wemp.

Gasls 2000 h 3 set objectives to be reached by the year $20 n 0$ for all United States strudents. It is expected that our students will be "first in the world in mathematics and science achevement."("Teachers and Goals 2000: Leacing the Jourtey Toward Ifigh Standards for all Students, ${ }^{n} 1995$, P. 1) The objectives for this gral inciude:

1) mathematios and science education, including the mettic system, will be strengthened throughout the system, especially in the earier grades.
2) The number of teachers with a substantive backgrourd in mathematios and science will imerease by fifty perectr.
3) The number of United States underyraduate and graduate students, enpecially women and minorities, who complete degrees in tuathematics, wience and engineering will increase significantly.("Teachers and Goals 2000: Leading the Joumey Tomard Figh Standards for all Students, "1995) By the yean 2000, it is hoped that students develop a functional level of scientific and mathematical hatracy, the motivation to excel ins science and mathematice, and the initiative to select science acd mathematios related careers.

Many states have set their own goals, such as the goats set by Maine. The Maine Mathematics and Science Alliance have developed their own goals. Their mission statement follows: "We seek a state able to sustain am effective leaming enviromment that supports ingreased aspiration and improved performance in mathematics and science for all students and all teachers."(The Maine Mathematics atod Science Alliance"" 1995, p.1) The goals of the alliance ate:

1) All students should demortritate the knowtedje and skills in scipance and mathematios to meet or exceed national standards.
2) Appirations and expectations for learning and achieting in science and
mathematics for all smoxints will be high.
3) Studont opportunties for learnisg science ant muthematies will be equitable.("The Maine Mathematics and Scionce Allanee," 1995; Maine is owe of he leading states in science and mathermatics reform.

Some school districts have set their own goals that follow Goals 2000. The Haddon Heights, Barrington, and Lawnside districts me working together in an effort to reform science and mathematics instruction. The following goals ate some examples of the reform efforts in the three distiets. Goal 1 , Objection 1.1 states: "To wse the local improvement panel's recommendations to increase the audentic aphevennent of our students in the areas of muthematics, science and tecbuolory as determined by the needs assessment survey within the three dislricts." ("Goals 2000: Enucate America Act," 1996) Goal 2 states: "By the year 2000, all students will Ieave grades 4, 8 , atd 12 having demonstrated competency over challenging subject mater indefing mathematios, science, and technology so that they may be prepared for further learning and productive emplovinent in our Nation's moden economy." (Goals 2000: Educate America Act." 1996) Goal 4, Objective 4.1 states: "To infuse lessons motving colletr planning and decision making, critical thriking and problem solving the practical apphitation of basic skills, and effective communication skills into mathematics andul seience lessons as reasured by revised curicula and instructiothal observations of the implernented lescons." ("Goals 2000: Educate America Act," 1996) Many more goals ane included in an effor to improve the learnity and teaching of mathentatios and science.

Science and mathematios organizanions have also set staindards for the leaming and teaching of science mod mathematics. The National Comeil of Teachers of Mathematios (N.C.T.M.) standards iuclude Curriculum and Evalation Standards for School Mathematics and Professional Teaching Stamiands. The M.C.T.M. wants schools to prepare students mathematically to function efficiently ith our society. Mary
science orgamizations have developed standards to infprove the teaching of science. Science For All Americans and Project 2061 emphasize bteracy in science for all Americans. These organizations are leading the efrorts to reform sience and mathematics education.

The N.C.T.M. is urging schools to prepare students to be mathematically yterate in order to function in our society. The goal of the N.C.T.M. and the National Research Council is to develop in stadents a functional level of scientific and mathematical litetacy. Surdent should excel in science and math and select careers related to the two disciplines.(Berlin and White, 1994) The N.C.T.M. standand on mathernatical connections emphasizes the importance of the comections anong mathematical topics and other disciplines. Students should be able to observe mathematics interacting with other school subjects and society.(Haigh and Rehfeld, 1995) Another N.C.T.ME standard states that students should be able to "apply mathematical thinkirg ane modeling to solve problems that arise in other disciptines." ${ }^{\text {(Davison, }}$ et ail., 1995, p. 229); The N.C.T.M bas recognized other subjects, including scienee, as part of their standards.

In Science for All Americans, science for all means that all people, inciuding women, girls, all racial and ethnic groups, the physically atd educationally chainenged, and those with limited English proficiency, should become scientifically literate. This requires that the cutriculum, teaching and assessment standards take into account the diversity, interests, motivation, experience, and understanding of afl shatents.(Hoffinan and Stage, 1993) These standards shonid highlight and promote the best practices of teaching science.

Science For All Arnericans and Project 2016 have reconmendations that should be met by an students. Students should be familiar with the ratural worta, and recogniza its diversity and unity. They should moderstand the key conceples and principles of science. Students should be aware of important ways it which science,
mathernatios and technology depend upon one another. Science, mathematios and technology are human cnterprises; and students should know their srengths and himitations. Students should develop scientific ways of thinking They should use their scientific knowledge and ways of thinling for mulviduak and social purposes.("Science For All Americans Summary," 1995) With these recommendations, cureiculums and instruction need to be reformed to best prepare our students

The National Committee on Science Education Standerds and Assessment met in May of 1992. They met to develop standerds for school science. The committee specified criteria to guide the funtre deveiopment of science education. The curiculum standards of the conmrittee defmed:

1) the nature of school science experiences effective in producing valued science leamity
2) the scientific information (facts, concepts, theories) that all students are expected to attain as a result of their science experiences and
3) the attitudes and inclination to apply scientinc principles and ways of thinking outside the formal education system.(Hoffman and Stage, 1993)
The standards were to provide a vision of excellence to guide the science educational system in productive and socially responsible ways.

Standards have abso been set for teachers and the teaching of scicnce and ntathematics. Teachers need to acquire the skills and knowiedge to provide students with school experiences to achieve the science and mathematies leaming outcomes. They need professional development to falfill their roles as science and mathematics teachers. (Hoffman and Stage, 1993) Teachers need a suppost system and resources for the effective teaching of science

Many teachers fatl below the minimum standards thentselves for teaching
mathematics and science. Much teaching of mathematios and scimee is still done where the teacher gives students information to menorize and then regurgitate. Teachers need tio expand their basic understanding of mathematics and science and acquire new skills and teaching techniques. They need retooling to explore concepts and feam content through cooperative learning and hands-on inquiry-based activities to take back to the classroom (Monteagudo, 1995) These activities provide teachers with the understanding and learning needed to connect their classroom stady of mathernatics and science to the standards.

When integrating science and mathematics, there are changes seen in the teacher. Integration improves teachers' attitudes toward teaching mathematics and science. The teacher's ability to articulate the curriculum improves. Figher level thinking skills are tangit more often. Teachers use alternative assessment devices more. Integration promotes the use of technology in the mathematics and science curricuhuns. Career awareness is incorporated into instraction. (Barba, 1995) Most importantly, integration increases teachers' motivation to teach mathematics and science.

Since teachers will interpret the new standards in mathematios and science, there must be a serious commitment made to teacher development. Teachers will decide how the new curriculum is to be realized and how instructional materials will be used. The teacher needs to be more inwolved in school wide decisions. Teacher development is the key to the school-wide renewal of mathematics and science.

Of course, there are many obstackes to reform. "Progreas has been hampered," says Doaglas Lapp, difeetor of the National Science Resormoe Center, "bocause efforts ith education have been driven by erisis." (Fisher, 1992, p.52) The funding and leadership have not been steady. It seems impossible to bave continuous, successful programs in scimee and mathematios teachen training it is difficult to provide
classrooms with up-to-date equipment and competers-(Fisher, 1992) Efforts that have been made to restracture the mathematios and science curriculums seem to have little effect on the conventional uses of the textbook and the methods of delivery. (Davison, at al, 1995) The attitudes of the school and the community are diffieull to change when trying to implement new programs. Even thougk the chaoges needed may not be easy, we must move forward and do what is best for our students.

Chapter 3

Design of the Study

Introduction

The purpose of this stendy is to determine if teaching sciture ant mathemaices with an inteppated approach will increase shuletus' achiwvenent levels. This shaty will also devermine whether tike attiludes of the fourth grade stuleats improve when tagegt with the integrated approach In order to discover any sigrificant ifferences: ripe students' achievement levels were measured by tests of the speciffe of hiectives tanght in science and mathentatics. An atbilude survey whe giver to measure any differences in antholes whem tuught with an integrated approach as compared to being raught the subjects separately.

Setting

Hadkop Heights is in Southern New Jersey. It is a small residential communty wilh few businesses. Faddon Heights can be described as a "Homerownh" where many families who reside thene live in homes previously owned by other family members, such as patents or grandparents. Many of the parents, whose chirdren attend the public school system, have thernslives attended the same school systern.

The Faddon Heights Fublic School District has four scinools, thee elementary schools (K - 6), and one High School φ - 12) that finchudes a fanior Sehool (7-8). The

High school includes students from Barrington and Lawnside, as well as Haddon Heights. The Haddon Heights High School dates back to 1924, while the oldest elementary schoot, Seventh Avenue, was builit in 1914. The elementary schools in fadion Heights are aeighborhood schools. There is no busing of students, except for special education, as they ate close enough to their neighborhood shaool to walk. Two of the elementary schools have one grade level each, while the third school frequentily has two of some grade levels, as needed according to the population. The Glenview School is the onty termentary school that houses separate special education classroonns.

There were 1,321 students enrolled in the Haddon Heiglats School District as of October 15,1996 . The racial composition of the students was 1,140 white, 150 black, 14 Fespatie, 1 American Indian and 16 Asian. It the Seventh Avenue School, where my study took place, 98% of the students speak English, with 1% speaking \$pantish and 1% speaking Turkish. The teaching staff in the Haddon Keights Public School District numbered 116 memiers as of October 15, 1996.

Description of the Population and Sample

The Seventh Avenue Elementary School in Haddon Hejghts tas 144 stadents. There is one grade of each level from kindergarten to grade six. The group which was the subject of this stady consisted of one fourth grade class from the Seventh Avenue School. The total population of the study was sixteen fourth grade, hetsrogeneously grouped students. The students are all of average to high ability. Due to the small nombers in the class, its members get much individual attention. The class consisted of twelve female and four male students. Fourteen of the students have been in the same class together since kindexgarten. Two students came to Seventh Averue in third grade.

Description of the Instrument

This smoy lasted for a two month period. For the month of Japuary, the objectives in science and mathematies were tested separately The stadents were administered a postest after each objective was taught in rasthematios and swience. Each sturdents' mean score was determined to assess their achievement in each subject sepatarely. During the second month, students were tested on the objoctives of the integrated unit being taught. The students were administered a postest after each objective in the integrated unit. Each
 scicnce for the totegrated unit. A comparison of the mesm test scores of the stadents'
 to February

In January, manhmatios and acibnce were tmigh separatedy. in mathoratics, the test wed same from the open Count marimmatics program. I consulted with the mathematics specialder in the district, Mrs. Kelly Johatoon. Mis. Johnopn and myself deremined that each test supports the National Stamdards for Mafinmatios mod follows the district curriculum specifications. The stodnats were fust rested with a review test from the Open Conit text book and then tested with the similar mastery dijective test that comes with the series. The students performed similarly on foth evaluations. In science a unit was tanght on deserts. Each objective coveref in the unit was tested with a teacher made test. The questions on each test followed the National Skandards for scicuce and the New Jersey Cote Curriculum Content Standards, as well as the current Gistrict curriculum. Each vest was given twice, both the same format, but with different questions. The students achieved similar scores on both tests. I also compared the scores with the studenfs' usual phrifomance in class, their participation and the projects hey completed for the unit. The ablievement of the students on the tests was equal to their
usual performance, participation and the quality of their projects.
For the month of February, a unit on mutrition pras tanght. The unit taught was from the AMS project. Each lesson from the unit coneliates to Lie National Mathematics and Science Standards. The unit also supports the cumienlum of the district in mathematics and science. Each objective was tested and retested to determine the relizility of the tests. The tests were of the same fomat and length with different questionts. Stadents achieved comparable scores for both tests.

Students were given a survey at the beginning and end of cach month to determine any differences in their attitudes toward the learning of mathematics and science separately or integrated. The word attitude used in this stody is defined as a leamed, predisposition to react in a consistent way toward an idea. The survey followed the Likert-type attitude scale. The survey was composed of statements to which the students made five responses: y es, almost always, sometimes, seldom, or no. The statements were averaged, and the score was rated from one to frive, with five being the arost favorable. The attitude surveys were evaluated and the scones of the two months fere onmpared using a t-Test to determine any differences in stadents' attitudes towani mathematics and science learning.

Relationship of the Instrument to the Null Hypothesis

The general hypothesis of this study states that there will be no sigruficant difference in the achievernend levels of the fourth grade studeats when mathematics and science are integrated as compared to being taught as separate disciplaes. The tests admustered during each month were scored on a sale of 0-109. Each stadents' mean score fias calculated for science mad mathematics. At the and of Feburiry, the scores of each individual were compared to see if there were any signifoant differeness in the achievement levels of mathematios and science for the two months. The same instrument
was used to compret any differences in the achievement of males to females in the class.

A second instrument, an attitude smrvey, was used to test he hypothesis that stated there would be no significant difference in students' attitudes when taught science and mathernatios separately or integrated. The survey was rated on a scale of 1 to 5 . The average was calculated for each student. At the end of the two months, the attitudes of the stodents were compared to discover any differences in their feelings toward science and mathenatics.

Time Period and Procedure of Data Collection

An in-depth review of current literature was used as a basis of gating might into the teaching technique of integrating science and mathematics. The research on the integration of science and mathernatics indicates that there are many atvantages to teaching mathematics and science with an integrated approach. The purpose of this stuty is to determine if there are any differences in student achievement levels when mathematios and science are taught with the integrated approach.

During the month of January, mathematics and science were taught as separate cisciplines. The mathematics lessons were taught from the Cpen Court mathematics program. In mathematics, the concepta taught were functions, graphime functions, basic facts, multiplying and estimating. In science, a unit on deserts was taught. The coneepls covered included otassifying, companing and contrasting of deser: landforms, plants, and animals. Each ojjective was tested after being taught. The mean scorss of the students Whe calculated for mathernaties and science. Each student was given an atuitude survey to determine how they felt about mathematics and science.

For the month of February, mathematics and science were taught as an integrated
unit using a numition mit from the AlMS project The concepts tabght were reading graphs, determining xanges, estimating, classifying, and comparing and contrasting foods. Each objective was tested for mathematics and science understanding. The mean scores of the students were calculated for the integrated mathematios and science unit. At the end of the month, each student was given an atitude survey to detentine how they feit about mathematios and science.

The two units taught in January and February were of equal Eevels of difficulty. Four teachers, including myself, evaluated each mit to establish that they were of equat levels of difficulty. The mathematics specialist and myself evaluated the two mathematics units taught over the two month period. Both units followed the New Jerssy Core Curricuhum Content Standards and the National Standards for Whathematics. Both unitg included problem solving, computation, use of calculators, and interpreting data. The units included difficult and easy questions, as weil as those of moderate difficulty. Together, we concluded that the units were of equal levels of difficulty. The fifth and sixth grade teachers and myself evaluated the two science units being taught in January and February. Both units followed the Core Corricuhury Standards for Science and the National Science Standards. Both units included higher devel thinking skills and critical thinking. The umits included difficult, moderate and easy levels of questioning. Both the fifth and sixth grade teachers agreed that the units were of equal levels of difficulty.

Each objective taught in science and mathematics was tested during the two months. The tests were scored on a scale of $0-100$. A mean score was cetculated for each student for $3 \mathbb{L}$ of the tests in the two month period. At the ered of each month, each student's scores pere averaged. A comparison of tile scores was made betweent bach student's final average for each month.

An attitude survey was used to test wheher the stedents felt differently toward scieace and mathematios over the two month time period. The survey was rated on a

Ecale of 1 to 5 . The storos of each siudent were averagen to determine their attitude of scibnce and mathemetics. The surveys wete bompleted at the end of each month and were compared for any diftemexces in attitudes towaris soience and rexthematics over the two month period.

Summary

In Chapter Three, the popalation, sample, and instrament of the study were outined and discussed. Comparisons of the mean test scores from tested objectives were used to assess the differences in smedent achievement leveds in mathernatics and science when tapht separately and integrated. Analysis of the scores would determine the validity of the hypotheses central to this stady. Stodents were sunteyed to determine any ditanences in their atitudes towari science and mathematios learring.

Chapter 4

Analysis of the Data Introduction

This study gathered information to determine if there were significant differences in the achievement levels of fourth grade students when taught integrated mathematics and science as compared to being taugit the subjects separately. The fourth grade class at the Seventh Avenue School in Haddon Heights were taught mathematics and science for one month as separate suljects and for one month using the integraled approach. This stuty also examined any differences in male and femalc achievement levels and any differences in attitudes towards mathernatics and science when taught with the two approaches. The methods of measuring achieverment were tests on the specific objectives of the lessons and an attitude survey. The tests for mathematios for Janusiry were surplied by the Open Court mathematics series. The science tess were teacher-made following guidelines from Ranger Rick's Nature Scopes. The mathematios and science tests for February were teacher-made following guidelines from an Allis tint. The hypothesis stated that there would be no significant differences in achivvement leweis or attitudes when the subjects were taught separately or integrated.

Tests of the Hypotheses and Results

The data presemed has been statistically analyzed using a t-Test to determine any differences in the achievenent levels of tixe fonnth grade strdents when tallght mathemarios and science with the integrated and separate approaches. The hypotheses being tested werc:
2.) There will be no significath differences in the achievement levels of the fourth grade stadents in Severth Averuve School in Haddon Heights when mathenzaics and science instruction are integrated as compared to being laught as separate disceplines.
2.) There will be to significant differences in the achievenuent levels of males and females in the fouth grade when sciense and mathematics aiee taught as separate disciplines.
3.) There will be at significant differences in the achievement levels of males and females in the fourth grade using the integrated approach to science and mathematics.
4.) There will be no significant differences in the attitudes of the fourth grade students when taughr with the integrated approach or when taught the two disciplines separately.

Presentation and Statistical Analysis of the Data Related to Hypothesis I

Hypothesis I states that there will be no significant differences in the actrievement levels in the fourth grade students in Seventh Avenue School in Haddon Heights when mathernatics and science instruction are integrated as compared to being tanght as separate disciplines. Tabie 1 summanizes the scores achieved during the month of

January when the students were taught mathematics and science as separate subjects．The mean of each test given was calculated with the scores ratging from 82.81% to 96．81\％．The combined mathenatios and science averages ranged from 83.43% to 97.14% ．The class average for the month was 91.66% with a standard devation of 4.19.

Table 1

Testa Scores and Mean Scores for the Foirth Grule Students When Mathematics and Science Were Taught as

Separate Disciplines for the Month of January

Name								Averege
Anv	i3	100	$\underline{8}$	8.2	9.	92	mis	91.14
\＃hephan	93	90	9.3	8.3	84．	100	易	94.14
Prabin	B6	98	9	89	95	37	33	92．71
Katie	83	98	94	$8:$	97	919	409	92.57
dede	55	95	85	89	93	100	40	94． 21
Andirew	8	8	93	99	ge	gat	93	93.71
Kerri	10	100	81	98	8.5	110	Hir	9680
Hegether	Ein	8.3	9	9	78	家	\％	13.43
A．pril	Q， 3	8	88	88	85	T1	93	92.57
Menalh	93	99	100	39	97	97	33	96．8n
Kiter	86	85	71	87	97	98	83	国 71
Nonelsarn	100	100	100	98	H2	10	79	9 P .11
Nen	7	日月	82	99	92	97	230	92.17
Ohristina	1 D	100	g g	9	100	1011	日g	97．14
Sarich	73	85	85	94	91	g 3	103	98， 71
Begit	60	85	92	91	91	ge	\＄${ }^{\text {b }}$	86.41
Sum of Scores	1323	1.477	1469	1609	1470	7545	1465	1486.55
Alean	82.81	晹31．	97.87	54.31	91．88	98．E．	91．5E	97.66
Stin of 93	113089	136987	135627	142593	135536	$450+55$	13if51	134685.95
Sum of Squares	3582．44	641.44	754.44	275， 44	479，75	1924	61t．g．	262.89
S．D．for Propulation	14.5	6.33	6㒶 7	4.15	5.48	3.41	8.88	4.05
5pmersambe	14.97	6.54	7.09	4.29	5．8E	3.53	6.39	419

Table 2 summarizes the scores achieved daring the mondin of February when the students were taught integrated mathematics and science. The mean of each test given was calculated with a range from 90.31% to 97.63%. The students combined mathematics and science averages ranged from 82.8% to 98.6%. The class average for the month was 92.61% with a standard deviation of 5.03 .

Table 2

Tests Scores and Mean Scores for the Fourth Grade Students When Mathematics and Science Were Taught as an Integrated Unit for the Month of February

Name						Average
Any	89	97	90	84	93	80.6
Meghan.	93	98	100	93	89	34.6
Robin	93	94	100	94	88	93.8
Katie	100	100	100	95	92	97.4
Julia	92	88	90	92	89	90.2
Andrew	93	100	100	88	89	94.4
Kerri	96	100	100	88	92	85.2
Heather	94	94	70	75	87	84
April	87	96	80	85	84	86.4
Megan	97	100	100	100	96	98.6
Kate	34	100	78	85	86	88.6
Jonathan	100	97	93	100	94	98
Ryan	83	98	90	92	84	93.4
Christina	103	100	9	$\underline{5}$	92	96,4
Sarah	100	100	98	100	94	98.4
Scolt	73	100	75	80	86	828
Sum of Scores	1496	1562	1480	1445	1445	1481.8
Mean	93.5	97.63	91.25	90.38	00.31	92.67
Sum of S.S.	140552	152658	134814	131452	130889	137613.2
Sum of Squares	676	167.75	1589	799.75	187.44	379.94
S. D. for Population	6.5	3.24	9.97	7.07	3.42	4.87
S.D. for Sample	6.71	3.34	10.29	7.3	2.53	5.08

Charn 1 shows the comparison of individual means for January and February. In manuary, mathematics and science were taught as semate disciplines. In Februay, mathematics and science were tanght as an integrated unit. The means for most individuals were slightly higher for the integrated unit, as shown in this graph.

Chart 1

Comparison of the Individual Means Wher Mathematics and Science Were Taught Separately in January and İntegrated in February

Chart 2 shows the cormpanison of the class means for January and Febraary. In January, mathematics and science were taught as separate disciptines. In February, mathematics and science were taught as an infegrated unit. The class mean for the momif of February, when mathematics and science were taught as an fittegrated urit are slightly higher than the January scores. Jamary's mean was 9 L .66 and February's mean was 92.61.

Chart 2

Comparison of the Class Means When
 Mathematics and Science Were Taught Separately
 in January and Integrated in February

The t-value calculated, as shown in Table 3, was -0.58 with 30 degrees of freedom. The absolute value of the t-value, 0.58 , falls traween fhe positive and negative critical value of 2.042. Athough there is a siight imcrease in achieversent levels shown tron Jankiny to Febrary, Hypothesis 1 can be accepted as there were mo significant differences in the achievement levels from January to February when nathematios and science were taugit separately or integrated. The increase could sinnify a trend and could be investigated further.

Table 3

Results from at-Test for Indepeadent Samples Comparing the Mean Scores of the Fourth Grade Students Wher Mathematics and Science Were Taught Separately in January and as an Integrated Unit in February

Statistic	Vatue
Number of scores in group one - January	16
Sum of scores in group one	1486.55
Mean of group one	91.36
Sum of squared scores in group one	134605.95
SS of group one	262.59
Number of scores in group two - February	12
Sum of scores in group two	148.5
Mean of group two	92.51
Sum of squared scores in group two	1376.3 .17
SS of group two	375.94
t-value	-0.58
Degrees of freedom(d)	30

Presentation and Statistical Analysis of the Data Related to Hypothesis 2

Hypothesis 2 states that there will be no significant differences in the achievement levels of males and fenales in the forrti grade when science and mathematics are taught as separate disciplines. Table $\frac{4}{4}$ shows the mean scores and the t-value of the male fourth grade students compared to the female :ourth grade students for the month of January.

Table 4

Results of a t-Test for Independent Samples Comparing the Mean Scores of the Male Students to the Female Students When

Mathematics and Science Were Taught Separately in January

Statistic	Value
Number of scores in group one - males	4
Sum of scores in group one	363
Mean of group one	92
Sum of squared scores in group one	33903.96
SS of group one	47.96
Number of scores in group two - fernales	12
Sum of scores in group two	1098.55
Mean of group two	94.55
Sum of squared scores in group two	10078188
SS of group two	214.3
t-value	0.3
Degrees of freedom(d)	14

The t -value, shown in Table 4, was caberiated at 0.18 wiltu 14 degress of thtedom The t-value falls berween the positive and negative uritical valus of 2.624. Therefore, Hypothesis 2 can be accepted as there are no siguificamt differences betwen male and fernale achievement when mathematies and science are tanght separately.

Chart 3 shows the comparison of the meles" group mean scores and the temales' group mean scores for January. The mean scores of the males group is slighty higher than the mean scores of the female group when mathematics and science were taught separately.

Chart 3

Companison of the Mean Scores of the Maie Group to the Female Group When Mathematios and Science

Were Taught Separately in Jamary

Hypothesis 3 states that there will be no sigridicant differances in the achievement levels of males and females in the fourth grade using the integated approach to science and mathematics. Table 5 shows the mean scores and t-vaiue of the maie fourth grade students compared to the female fourth grade students for the morith of February.

Table 5

Results of a t-Test for Irdeperident Samples Compuring the Mean Scores of the Male Students to the Female Students When Mathermatics and Science Were Taught as an Inegrated Unit in February

Statric	Vadue
Number of scores ing group one - males	4
	368, 6
Mesan of group one	32.15
Sum of squared scone ingroup one	3403476
SEisf gmome ame	128.28
Number of scores in group two -temeles	12
	1118
Mean of group two	02.75
Sum of squared scores in group two	103578.41
SS of group two	250.53
t-value	-0.21
Degrees of freedomid)	14

Chart 4 shows the comparison of the male groups' mean scores and the females' aroup mean scores for February. The mean scores of the female group is siighty higher than the mean scores of the male group when mathematics and science were taught as an intogared urnit. Though there were no significant differnces in the achievement levels, thix could be stadied further to see if there is a tread.

Chart 4

Comparison of the Mean Scores of the Male Groap to the Female Group When Mathematics and Science Were Tanght as an Integrated Unit in Fepruary

For Febrnaty, the t -value, shown in Table 5, was calculated at -0.21 with t 4
 2.624. Thenefore, Hypothesis 3 can be accepted as there are no significant differences between male and female achuevement when matiematics and science are taught with the integrated approach.

Presentation and Statistical Analysis of the Data Related to Hypothesis 4

Thpothesis 4 states that there pill be no significant differences in the attitudes of the fourth grade students when taught with the integrated approacin or when taught the two disciplines separately. Table 6 shows the results of the combined mathematics and science atitude struwy seores. The survey was based on a Likeri-typ, 1 to 5 scale and then averaged for each shadent. As seen in Table 6, most attitudes did increase when the studenis were taught with the integrated approach to mathematios and science.

Table 6

Results of the Attitude Survey Given When Mathematics and Scieace Were Taught Separately and When the Disciplines Were Integrated

	Separately	Integrated
	Math and Science	Math and Science
Name		
Amy	34	4
Meghan	3.8	43
Robin	4.3	4
Katie	39	2
Nulis	4.3	46
Atudiew	4.2	4 s
Kerin	43	47
Heather	345	38
Aprll	42	41
Magzan	435	45
Kate	4.1	$4: 7$
Jonathan	35	4.1
Ryam	4.5	4. 4
Christina	4.37	4.8
Sarah	4.27	4.2
Scott	3.5	3.9

Table 7

Resulits of the t-Test for Independent Samples for the Attitude Survey Given When Mathenaties and

Science Were Taught Separately and Integrated

Statistic	Vatue
Number of scores in group one - Separately	16
Sum of scores in group one	64.44
Mean of group one.	4.03
Sum of squared scores in group one	261.67
SS of group one	2.14
Number of scores in group two- Integrated	16
Sum of scores ingroup two	63.1
Mean of group two	4.25
Sum of squared scores in group two	29.07
SS of group two	4.22
t-value	$-t .93$
Degrees of freedom(d)	30

The t-value catculated from Table 7 was -1.93 with 30 -iegrees of feedom The absolute value of this t-value, 1.93 , falls outside the positive ancl negative critical value of 1.697. Out of 16 scores, there was an itecease in 12 individual scores. Therefore, Hypothesis 4 is rejected that there are no significant differences in attitudes when matheratios and science are taught separately or integrated. The increase in positive athitudes might account for the stightly higher achievement Ievels in February.

Summary

This chapter presented the data collected from tests and an attitude survey given to a fouth grade class. The data was collected over a two montin period, from Jamuay to February. The students were taught mathematics and science as separate subjecta for one month and integrated for another monnll.

An analysis of the data was done in order to accept or reject the four stated hypotheses. t-Tests were performed to detemme if ary signigicant differences existed between the mean scores. Although there was a slight increalse in achievement from January to February, after analyzing the results of these tests, 站 pas fourd that Hypotheses 1,2 , and 3 were aceeptef. After andlyzing the r -Test companing the students' attitudes for the twe months, Hypothesis 4 was rejected.

Chapter 5

Conclusions and Recommendations

Summary of the Problem

The purpose of fin staly was to deproudine there were any differences in fourth grode stulanit achieveruent tevals when shudenta were tanght mathematics and science zis separate disciplines or when the subjecte were turght in an integrated manner. Tris suny athemped to wetermine whether thete were wiy diftomens in mate and femaia adiewtuent levels miten tanght the dikciplines separately or integrated. This study also
 tanght with the two different teachirg nethods.

Sutmaty of the Method of Investigation

A heterogeneoms fourth grade class was selected for this situdy, resulling in a toisl of 16 students participating. For the month of January, science and mathematics wers taught to the studetrs as separate disciplines. For the month of February, science and mathematies were taught with an integrated approach using an AiMS unt. The two urnts were dexigned and analyzed so that the levels of difficulty of that units were similis. The students were tested on each objective taught, and the raeans of the stadents for each
month were compared. The students also completed an attitude survey to detemine if there were any differences in attiudes oye the two month period. An amalysis wats completed using t-Tests to detemine any differences in the achierement levels or attitudes of the students. The results from the t -Tests were studied and compared.

Summary of the Findings and Conclusions

Hypothesis 1, which states that there will be no significant differences in the achievement levels of the foluth grade students in Seventh Avenue School in Haddon Hetghts when mathemalies amd swisnee instrwation are integrated as compared to being taught as separate disciplines was analyaed using a 1 -Test The r-value was calculated as -0.58 with 30 degrees of Geedom. This value falle between the positive and negative citiesl valne of 2.042 . Even though the students showed a slight aberease in scores from January to February, Fiypothesk 1 is nocepted as there wore no signifisant diflercnees in aclieverment levels when soience and mathomatics wore tanght separaty or integnted.

Hypothesis 2, which states that thene widl he no siguificant diffacaces in the achievement levels of ruales and fomates in the fourth grade wincu science and mathematios are tuaght as separate disciplines was analyzed wsing a t-Test. The t-value was calculated as 0.18 with 14 degrees of freedom. The critict vahle determined was 2.624. Since the t-value of 0.18 falls betwen the positive and negative critical value, Hypothesis 2 can be accepted as there were no significant diferences in achievement levels between males and females when taught mathetratios and soience as separate disciplines.

Hypothesis 3, which states that there will be no sigr:icant difterences in the achevement levels of males and fernales in the fough grade using the integrated approach to science and mathematics was analyzed using a t-Test. The t-value pas calculated as
-0. 21 with 14 degrees of freedom. The erilical value was detenamed at 2.674 . Stuce the \&-value falls betwew the posirive sud negarive critucal walue, Fypochesis 3 an be aceepted as there were no significant fifferences in the achievement levels in molds mind females when science and mathenarics were thaght using the integrated approach.

Hypothesis 4, which states that there will be no signilicant diflerences in the attitudes of the fouth grade studenits when tanght with the frtegrated approach or when taught the two disciplines separately was also analyzed using at t-Test. The resulus show a t-value of -1.93 with 30 degrees of feedom. The critical value deternined was 1.697. Since 1.93 falls outside of the positive and negative critical value, Hypothesis 4 can be rejected that there are no significant differencen in the attiondes of the fouth grade surdents when tanglat with the meterated appoach or when taught the two disciplines separately. The attitudes increased in Februaty when mathematics and seinnee were taxight as att integrated onit.

Implications

The acceptance of Hypothests 1 says that there were no significant differences in achievenzent when students pers taughz mahematics and science separately or integrater. The literature reviewed for this study does not ageee with that finding. This could be becmuse of the small class size. With the amount of individual attention that the studerts receive in this smat class, they ranely fan behnd. When comparing Table 1 and Table 2 in Chapter 4 , the individual scores of the students did increase, as sefn in Chant 1. Even though the scones incressed flom January to February, it was not significant enough to show any differences when nsing a t-Test.

The acceptance of Hypothest 2 says that there were no significant differences in The achievement of males and females when taught mathematics and serityee as separate
disciplines. The mean for the month of January for mates was ge. 0 and for femaies was 91.55 The mean for the males was slightly yogher than the females when science and mathematios whe tanght as separate disciplines. Arother stady with a class of males and fenpales more evenly distributed may come up with a different result.

The abeeptance of Hypothesis 3 says that there were no significent differences in the achevement of males and females when taught mathematios and seicnce with the integrated approach. This does not support the literature reviewen for this struty. For the month of Febnuary, the mean for males was 92.15 and for femains was 92.77. The mean for the females was slightly higner than the males for the month when science and mathematics were taught with the integrated approach. Again, cilks size and the fact that there were only 4 males and 12 fembes used for this shaty conld be the reason for this finding. The differences were so small that more testing would reed to be completed on a class with a more even distribution of males and females.

Hyperthesis 4 was rejected as there were no significant dievences in atitudes when matheroatics and science were taught separately or integrated. Table 7 , in Chapter 4, shows the resums of the t-Test from the attitude survey for faruaty and Febroary. The results show a sigrifigant increase in attitudes when the studetus were taught scetence and mathematics with the integrated approach. This could also be tue to the interest lewel of the muit. Although the students were interested in the units tuight in Jamuary when the disciplines were taupht separately, they were clearly very excited about the food unit taught in February when the two disciplines were integrated The inctease in attudes conk aecount for the slight increase in achievement levels.

The study showed that the female means and attitucies hiofeased when scimee and mathematics were tanght in the integrated manner. Though the increase in the mean was marimal, this trend colid be further stodied. A stady cond be conaucted afross grade levels focusing on female afinevement to detmenthe whather the iuregrated approach is
more bencficial to female students.

Recommendations for Futare Study

Based on the findings from this study, the following are recommendations fer futare study:

1. This stody could be conducted for a longar periou of time.
2. This study could be conducted companing two or more separate classes at the same grade level.
3. A larget and more diverse sample of students could be used to make this study more valid and reliabie.
4. A saxty conld be conducren to further feseanch the merease in achievement levels and attitudes of the female stucients.
5. This study could be conducted across grade leweis to comopate difierences at different stages of child development:

APPENDLX A

TESTS GIVEN FOR MATHEMATICS AND SCIENCE DURING THE MONTH OF JANUARY WHEN THE DISCTPLINES WERE TAUGHT SEPARATELY

Use inverse operations to find the values of x in the ordered pairs. (The first one has been done for you.)

1. x
 y

$$
4
$$ $(x, 0),(x, 7),(x, 19),(x, 56),(x, 97)$

2. x

$(x, 3),(x, 7),(x, 8),(x, 9),(x, 5)$
3.

$(x, 27),(x, 18),(x, 21),(x, 15),(x, 9)$

Complete these chants.
4.

$x-6)-7$	
x	y
4	10
	12
8	
15	
	54

5.

$x-(x 5)-y$	
x	y
	5
3	15
7	
	45
	0

6.

$x-(-4)-y$	
x	y
	0
4	
36	
16	
	7

Complete these charts.
7.

$x-(+5)-y$	
x	y
0	
5	
	23
106	
	132

8.

$x-(\times 10)+y$	
x	y
	50
	100
	60
	200
	70

9.

$x-(-8)-y$	
x	y
	7
	9
	8
30	
24	

10.

$x-(-10)$	
x	y
	50
	100
	60
	200
	70

11.

$x-(-3)-y$	
x	y
	0
	4
30	
	9
15	

32.

Find the function rules before you complete these charts.
13.

+()$_{y}$	
x	y
3	
	24
8	12
	83
36	40

14.

$x-1$	y
x	y
11	0
57	
9	0
98	
163	

15.

$x-9$	y
$x \mid$	y
x	y
50	
5	5
1	
9	
356	356

Use inverse operations to replace each t with the correct number. (The first one has been done for you.) Then make a graph for each set of ordered pairs.
1.
1

$(x, 3),(x, 9),(x, 28),(x, 0),(x, 15)$
2. $x \rightarrow-(x)$ - y ($x, 9),(x, 12),(x, 18),(x, 16),(x, 14)$
3. $x \longrightarrow y(-7) \rightarrow 3,3),(x, 7),(x, 0),(x, 12),(x, 10)$
$4, x \rightarrow y \quad(x, 9),(x, 0),(x, 6),(x, 1),(x, 5)$

Copyright © Open Coun Pubishing Company

Use inverse operations to replace each x with the correct number. (The first one has been done for you.) Then make a graph for each set of ordered pairs.

1. $x \rightarrow(\times 3)+\operatorname{ta}-y \quad \begin{gathered}0 \\ (x, 2)\end{gathered}(x, 11),(x, 17),(x, 14)$
2. $x-7)=n-(x 5)+y \quad(x, 0),(x, 15),(x, 5),(x, 10)$
3. $x-1+n-4(x, 4),(x, 6),(x, 9),(x, 13)$
4. $x-3+3-1+2(x, 8),(x, 6),(x, 4),(x, 3)$

\qquad

Do these problems.

$$
x-x+n+5+y
$$

1. a. Pick a number between 0 and 10 for the value of x. Make an ordered pair of the number you used for x and the value of y.
b. Find 2 more ordered paine for the same function.
c. Graph the 3 ordered pairs you have found.
d. Look at your graph. Fick a point that has 4 as its first (sideways) coordinate and is on the same line as the other 3 points. What is the second coordinate of the point you pirked?
e. Look at your graph. Pick a point that has 17 as its second (up-and-down) coordinate and is on the same line as the other points. What is the first coordinate of the point you picked?
f. Replace x and y in these ordered pairs with the correct numbers:
$(4, y),(x, 17)$

Solve. Watch the signs.

1. $28 \div-\quad=7$
2. $\times 8=24$
3. $-\ldots 5=7$
4. $-\ldots+6=13$
5. $-3=9$
6. $9+$ \qquad $=13$
7. $6+7=$
8. $14-$ \qquad $=10$
9. $8 \times 7=$ \qquad
10. \qquad $-9=2$
11. $18-9=$ \qquad
12. $6 \times 5=$ \qquad
13. $+\quad+8=17$
14. $-\quad+6=14$
15. \qquad $=7 \times 5$
16. \qquad $\div 9=6$
17. \qquad $\div 4=9$
18. $6 \times 7=$ \qquad
19. $49 \div$ \qquad $=7$
20. $6+$
\qquad $=19$
21. \qquad $=5+8$
22. \qquad $=81 \div 9$
23. $8+4=$
\qquad
24. \qquad $=4 \times 4$
25. $24=$ \qquad $\times 6$
26. $16-$ $=9$
27. 12 - \qquad -8
28. $-48 \div 6$
29. 15
$9=$ \qquad
30. $3+8=$ \qquad 76. $x 8=32$
31. $\times 6=36$
32. $\div 6=9$
33. $8 \times$ -64
34. $18 \div 9=$ \qquad
35. $19+$ \qquad -23
36. 9
37. 16
38. 8
39. $7 \longdiv { 4 2 }$
40. 5
$\begin{array}{r}\times 6 \\ \hline\end{array}$
-7
$+3$ $\times 4$
41. $\begin{array}{r}4 \\ +9\end{array}$
42. 16
43. 9154
44. 9
45. 20 $+9$
-8
+8
$+\quad$
14
46. $\begin{array}{r}15 \\ -\quad 8 \\ \hline\end{array}$
47. 3
$+9$
48. $\begin{array}{r}13 \\ -\quad 4\end{array}$
30.8964

Solve. Watch the signs.

1. $23-\square=5$
2. $-\times 2=18$
3. $64 \div 8=$ \qquad 28. $9 \times 6=$ \qquad
4. $36 \div-=9$
5. $32 \div-=4$
6. $11-3=$ \qquad
7. $9+$ \qquad $=15$
8. $8 \times 6=$
9. $\quad \div 4=12$
10. $-\quad+9=16$
11. $24 \div-=6$
12. $16 \div$ \qquad $=4$
13. $12-8=$
14. $9 \times \ldots=81$
15. $8+\ldots=13$
16. $-13=6$
17. $7 \times 7=$
18. $42 \div$ \qquad $=6$
19. $-\times 9=36$
20. $-\quad \times 6=54$
21. $-\quad=6 \times 5$
22. $14-$ \qquad $=6$
23. $17-$ \qquad $=8$
24. $35 \div 7=$ \qquad 16. \qquad $+9=18$
25. $9+2=$ \qquad
26. $56 \div \ldots=8$
27. $5+$ \qquad $=15$
28. $16-8=$
29. \qquad $-9=4$
30. $9+$ \qquad $=12$
31. \qquad $-6=7$
32. \qquad $\times 7=35$
33. $24 \div 3=$ \qquad
34. \qquad $\times 7=28$
35. 7 $\times 6$
36. 11
37. $\quad 19$
38. $9 \longdiv { 3 6 }$
4i. 9
-2
-7
$\begin{array}{r}\times 9 \\ \hline\end{array}$
39. $\quad 13$ $-\quad 9$
40. 8
41. $7 \longdiv { 4 9 }$
42. 9
43. 20 $+8$
$+7$
-16
44. 15 -7
45. 8
$+4$
46. $\quad 16$
$5 0 . 8 \longdiv { 5 6 }$

Look at the graph. What are the coordinates of these points?
\qquad 4. D \qquad
2. 8
5. E \qquad
3. C \qquad
6. F \qquad

Find the value of x or y.
$7.4 \longrightarrow y$
$\%=-$
$8.7 \rightarrow 4=-$
9. $\alpha-(-7) \quad \alpha=2$

Gopytight ©pan Cour: Puidishing Company
\qquad
10. 13

$\mathscr{M E}$

11. 9

$A=$

12.

$K=$ $R_{2}^{n}=$

What is a possible function rule for each of these?
13.

$x-\bar{Z}+\bar{?})$	
x	y
4	8
5	10
2	4
1	2

14. | $x-(?)$ | |
| :---: | :---: |
| x | y |
| 7 | 14 |
| 4 | 11 |
| 20 | 27 |
| 14 | 21 |

Solve for n.
15. $42 \div 6=7$
16. $n \times 5=45$
$17+7 \div 7=3$
18. $19-n-11$
19. $12 \times 6=18$
20. $5 \times 5=n$ \qquad

Add or subtract. Watch the signs.
21.
847
22. 741
23. 515,806
$\begin{array}{r}-\quad 99 \\ \hline\end{array}$
$=33,907$
24. 74,318
37.782
25. If Mark saves $\$ 7$ a week, how much will he save in 7 weeks?
26. Jesse lives 3 kilometers from school. Megan lives 1 kilometer from Jesse. How far does Megan live away from school?
27. Tricia's 20th birthday was in 1988. What year was her 10th birthday?

Tell whether each angle is a right angle.
28.

29.

For each pair of lines, tell whether the lines are parallel, perpendicular, or neither.
30.

31.

32.

\qquad

How many lines of symmetry can be drawn in each figure?
33.

34.

Name
Date \qquad
Science- Desert test

1. Name three things that make a desert a desert.
\qquad
\qquad
2. How much rainfall do deserts get?
\qquad
\qquad
3. How many major deserts are there?
\qquad
\qquad
4. What is a hot desert? Give an example of a hot desert.
\qquad
\qquad
\qquad
5. What is a cold desert? Give an example of a cold desert.
\qquad
\qquad
\qquad
6. Name two things the wind does to change deserts
\qquad
\qquad
7. Name wo things water does to change desents
\qquad

\qquad

Name

Date \qquad
Science-Desert plants quiz
Use the following words to fill in the blanks. Use capitals where needed.

colorful	smaller	roll up
animals	drought	moisture
growing	taproots	hairs
dry	bloom	chemicals
sleep		

1. Desert plants have \qquad openings on their leaves.
2. Plants \qquad their leaves during the day.
3. Desert plants lose their leaves during a \qquad .
4. on leaves reduce \qquad loss by breaking the force of the wind.
5. Spines on stems protect plants from \qquad .
6. \qquad grow more than 100 feet long.
7. Some plants give off \qquad to keep other plants from
\qquad nearby.
8. Sone seeds \qquad during \qquad spells.
9. When plants \qquad , the desert changes into \qquad fields.

Name \qquad
Date \qquad
Science-Deserts-Unit Questions

1. Name two charactenstics that all deserts have in conmon.
2. Areall deserts hot? Explain your answer.
3. Name two cold deserts.
4. How do wind and water create desent landforms?
5. What is the difference between a hot desert and a cold desert?
6. What do camels store in their humps?
7. Name three ways animals escape desert heat.
8. What are the two largest deserts in North Amenica?
9. Name two things peopie do that hurt deserts.
10. Describe four ways plants have adapted to living in the desert.

1I. What is the largest desert in the world?
12. What happens when desert lands are over-irrigated?
13. How is a playa fomed?

14 How are mesas formed?
15 What is an oasis?

APPENDLX B

TESTS GIVEN FOR MATHEMATICS AND SCENCE DURING THE MONTH OF FEBRUARY WHEN THE DISCIPLINES WERE INTEGRATED

Name \qquad
Date \qquad
Science - Food Quiz
Answer the following questions in complete sentences.

1. Why do you need breakfast? Tell two reasons in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
2. Why is food important to people? (Do not use the same answer from number one.)
\qquad
\qquad
3. How does lack of food affect you?
\qquad
\qquad
4. What is in food that helps us be healthy?
5. Complete the food pyramid. Label each section with the group name and tel] how many servings you should have from each group. List two examples of food from each group.

Date
Science - Fair Shares
Solve the following problems. Show all of your work. Put any pieces in fraction form.

1. You have 67 pieces of candy. How do you split it fairly between four people?

Each person would get \qquad .
2. You have 102 pieces of candy. How do you split it fairly between four people?

Each person would get \qquad .
3. You have 73 pieces of candy. How do you split it tairly between four people?

Each person would get \qquad .
4. You have 25 pieces of candy. How do you split it fairly between four people?

Each person would get \qquad .
5. You have 17 pieces of candy. How do you split it fairly between four people?

Each person would get \qquad .
6. You have 59 pieces of candy. How do you split it fairly between four people?

Each person would get \qquad .
7. You have 82 pieces of candy. How do you split it fairly between four people?

Each person would get \qquad .
8. You have 123 pieces of candy. How do you split it fairly between four peopie?

Each person would get \qquad .
9. You have 111 pieces of candy. How do you spht it finty between four people?

Each person would get \qquad .
10. You have 96 pieces of candy. How do you split it fairly berween four people?

Each person would get \qquad .

Name \qquad
Date \qquad
Science - Apple Experiment
As we experiment, answer the following questions in complete sentences.

1. How did the mass of the apples change after four days?
\qquad
\qquad ... \qquad
\qquad
\qquad
2. What did the apples lose? Where did it go?
\qquad
\qquad

\qquad
3. Did any of the apples gain mass from one day to the next? Why?
\qquad
\qquad
\qquad
\qquad
4. Did the chopped apple lose more moisture than the peeled apple? Why?
\qquad
\qquad
\qquad
\qquad
5. Why did the unpeefed apple lose so little moisture?
6. What other fruits might have similar results? Why?
\square
7. How is the moisture in foods. such as apples, important to our bodies?

\qquad

Name \qquad
Date \qquad
Science - Blue-Ribbon Lunch

1. What is a blue-ribbon lunch? List how many servings you should have from each food group.
\qquad
\qquad
\qquad
\qquad
2. On the following menu, list the foods for a blue-ribbon lunch and put the serving numbers in the correct boxes.

Menu for Bap-Ritbon Lunch	Eread	Vegetable	Fruit	Milk	Mieat	Sweets

3. On the following menu, list the foods for a bad lunch and put the serving numbers in the correct boxes.

Mentu for bed lund.	Bread	Vegetable	Frut	Milk	Meat	Sprets

4. On the following menu, list everything you had for hunch today and put the serving numbers in the correct boxes.

5. List any changes you can make in your lunch from today to make it a blue-ribbon lunch.
\qquad
\qquad
\qquad
\qquad _ـ $w=$

APPENDIXC

ATTTTUDE SURVEYS FOR
 JANUARY AND FEBRUARY

Date - January 31, 1997					
Name					
Meth	Yes		Sometimes		No
	5	4	3	2	1
lliked solving functions.					
l liked solving basic fact problems.					
I liked graphing.					
L fiked estimating.					
l liked solving word problems:					
4 liked multiplying by factors of ten.					
It bked working with a partner.					
I liked working with a group.					
Science	Yes		Sometmes		Nr
	5	4	3	2	1
1 liked learning about desert landforms.					
\% liked learning about desert animals.					
H liked learning about desert plants.					
If liked writing the coyote story.					
3 liked writing the plant report.					
(liked writing the animal report.					
1 liked making a desert scene.					
I iked working with a parther.					
I liked working with a group.					
I liked telling the class what I knew about deserts:					

February 28, 1997					
Name					
Math	Yes		Sometimes		No
	5	4	3	2	1
d liked measuring mass.					
1 liked learning fractions.					
1 liked graphing.					
1 liked estmeting.					
fliked sovirg word probiems.					
1 liked finding percentages.					
1 liked working with a partner.					
d liked working with a group.					
diked sinding averages.					
Science	Yes		Sometimes		No.
	5	4	3	2	1
I liked learming about the food pyramid.					
1 liked learning why we need food.					
1 liked learnimg about tre fat content in food.					
1 liked making the food pyramid.					
1 likee corrpering food packaging.					
I liked the apple experiments.					
1 liked collecting and recording data.					
1 liked working with a partmer.					
f liked working writh a group.					

REFERENCES

Ahigren, A., \& Ruherotd J. (1993, May). Where is protect 2061 rodey? Educational Leadership, 50, 19-22.

ARAS Education Fondation (1996). Iaw Brakses and Feart Thumpers Californa: Fresno.

American Association for the Advancement of Science, Piofect 2061. (1995). Science for ail Americans summary. Wasinggtor, D.C. : Americm Association for the Advancement of Sciente.

Barba, R. H. (1995). Science in the mankicharai classtocm. Needham Heights: Allyn and Bacon.

Berim, D. F., \& Hylen, J. A. (1994), Maing comections in raxth and science: Identifying Student Outoomes. School Sciepce and Mathematics 94, (6), 283-290.

Berim, D. F., \& White, A. L. (1992). Report from the NSF/SSMA Wingspread conference: A network for integrated science and mathernaics teaching and leaning. School Science and Mathematics 92 (6), 340-342.

Berlin, D. F., \& White, A. L. (1994). The Berlin-White i:tegrated science and mathematios model. School Science and Mathematics, 94 (1), 2-4.

Charbotmeau, M P., \& Reider, B. E. (1995). The intergted elementary classroom. Neetham Heights: Allyn and Bacon.

Crosswhite, F. J. et al. (1989, November). NCTM stardards for school mathematios: Vision for implementation. Arithmetic Teacher. 37. 55-60.

Davison, D. M., Miller, K. W., \& Metheny, D.L. (1995). What coes integration of science and mathematics really mean? School Science and Mathematics, 95 (5), 226-229.

REFERENCES

Dutton, W. \& Blum M. (1996, February). The measirement of attitudes toward anithuretic with a Lilert-type test. The Elemenarys School Joumal, 259-264,

ERIC Clearinghouse on Information Resources. The National education goas.
 mkedo\% 60 ed93. $\mathrm{xt} \% 3 \mathrm{Bl}$) 1993 . (Accessed 20 Noverrber 1990).

Fennimore, T, \& Cook, C. A model of change in science attd math educaion. Chtpi/wwoy.ncrelorgimands/docs/5-10.htm> 1993. (Accessed 20 November 1996).

Fennimore, T., \& Cook, C. Toward best practice in math and science: The big picture and the role of the NCREL. htip://www.rcteLorymandi/docs/5-12.htm 1993. (Accessed 20 November 1996).

Fisher, A. (1992, September). Why Sobnny can't do science and math. Popoular Science 241, 50-59.

Haddon Heights, Barrington, and Lawnside Consortium. (1996). Goals 2000: Educate America Act (RFP $\% 96$-AA03-A01)

Haigh, W., \& Rehfeld, D. (1995). Integration of secondacy mathextatics and science methods courses: A model School Science and Mathematics, 95 (5), 240-244.

Hoffman, K. M., \& Stage, E. K. (1993). Science for all: Getting it right for the 21.st century. Educational Leadership. 50, (5), 27-31.

Kloosternam, P., Raymond, A., \& Emezaket, C. (1996, September). Students' beliefs about thathematics: A three year study. The Elementary School Journal 97 , 39-56.

Leiva, M. (Ed). 1992. Cumriculum and evalation standards for schoos mathematics, adidenda serios fourth grade. Virginia: Reston.

REFERENCES

Maine Mathematics and Science Atrance. The Maine methematics and science alliance: A new vision for mathernatics \& science entucation in Maine.
<htpi//www.agate.net/~feberle/mmsa.htmp 1995. (Accessed 20 Novenber 1996).
Mitchell, C. E., Miller, L. D., \& Paine, G. (1995). Scienlific methodology and elementary school mathematics. School Science and Mathematics, 95 (5), 260-263.

Monteagudo, L . The teachers academy of math and science: Retooling the education workforce. Shtp///www,therelorgimands/docs/9-2hens> 1995. (Accessed 20 November 1996).

National Education Goals and Objectives. Appendix 5. Teachens and Goals 2000: Leading the journey toward high standards for all students.
chttp//www.ed.gov/G2K/teachers/plan-pat.btnal> 1995. (Accessd 20 November 1996).
National Wildife Federation (1989). Ranger Rick's nature scopes, discovering deserts. Washington, D.C.

New Jersey State Department of Education Guide to New Jersev's core curiculum content standards. (PTM \#1400.29).

Treagust D. F., Duit, R., \& Fraser, B. J. (Eds.). (1996). Fmproving teaching and leaming in science and mathematics. New York: Teacher's College Press.

Underhill R. G., Abdi, S. W., \& Peters, P. F. (1994). The Vtrimis state systemic initiative: A brief overview of the lead teacher compontent and a description of the evolving ruathematics \& science intepration outcomes. Scebol Science and Marhernatics. 94 (1), 2629 .

Willoughby, S., Bereiter, C., Hilton, P., \& Rubinstein, J. (Eds.). (1987). Real math, level 4. Minois: Open Court Publishing.

BIOGRAPFICAL DATA

NAME:Dori Whiman Rodgers
DATE AND PLACE OF BIRTH: Aprii 21965
Catnders New Jetsey
HIGH SCHOOL:
COLLEGE:
Audubon High School Audubon, New Jersey Graduried 1983
Glassbero State Callege Glassboro, New Jersey B. A. 1986
GRADUATE WORK: Glassboro State CodegerRowan UniversityGlassboro, New JerseyM. A. 1997
PRESEXT OCCLPATION: Fourth Grade Teacher Haddon Heights Schoof District Haddon Heights, New Jersey

